Max 4x1+3x2
St
Horas) 4x1+2x2<=50 (Holgura)
Kg) x1+2x2>=10 (Superflua)
Pedido) x1+x2=20
End
LP OPTIMUM FOUND AT STEP 1
OBJECTIVE FUNCTION VALUE
1) 65.00000
La ganancia máxima es de S/. 65
VARIABLE VALUE REDUCED COST
X1 5.000000 0.000000
X2 15.000000 0.000000
La producción óptima es de 5 unidades del producto 1.
La producción óptima es de 15 unidades del producto 2.
ROW SLACK OR SURPLUS DUAL PRICES
Fila holgura (<=) o superflua (>=) precio dual
HORAS) 0.000000 0.500000
No sobra nada de horas, todas están siendo utilizadas.
Por cada hora adicional se gana S/: 0.50/h
KG) 25.000000 0.000000
Se van a usar 25 kg adicionales para cumplir con la producción.
PEDIDO) 0.000000 2.000000
Por cada unidad adicional que se pida se gana S/:2/unid
NO. ITERATIONS= 1
RANGES IN WHICH THE BASIS IS UNCHANGED:
OBJ COEFFICIENT RANGES
RANGOS DE COEFICIENTES: OPTIMALIDAD
VARIABLE CURRENT ALLOWABLE ALLOWABLE
COEF INCREASE DECREASE
X1 4.000000 INFINITY 1.000000
(4-1)<=c1<=(4+infinito) 3<=c1<=infinito La ganancia del producto 1 puede bajar hasta 3 y puede subir hasta infinito
X2 3.000000 1.000000 INFINITY
(3-infinito)<=c2<=(3+1) infinito<=c2<=4 La ganancia del producto2 puede bajar hasta infinito y puede subir hasta 4
RIGHTHAND SIDE RANGES
RANGOS EN LADOS DERECHOS: FACTIBILIDAD
ROW CURRENT ALLOWABLE ALLOWABLE
RHS INCREASE DECREASE
HORAS 50.000000 30.000000 10.000000
(50-10)<=b1<=(50+30) 40<=b1<=80 La cantidad de horas mínimas son 40 horas y las máximas son 80 horas.
KG 10.000000 25.000000 INFINITY
(10-infinito)<=b2<=(10+25) Infinito<=b2<=35 La cantidad mínima de Kges cero horas y la máxima es 25.
PEDIDO 20.000000 5.000000 7.500000
(20-7.5)<=b3<=(20+5) 12.5<=b3<=25 La cantidad mínima de pedido es 12.5 y la máxima es de 25.